Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Zeynep Gültekin, ${ }^{\text {a }}$ Wolfgang

 Frey ${ }^{\text {b }}$ and Tuncer Hökelek ${ }^{\text {c* }}$${ }^{\text {a }}$ Zonguldak Karaelmas University, Department of Chemistry, 067100 Zonguldak, Turkey,
${ }^{\text {b }}$ Universitat Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and ${ }^{\mathrm{c}}$ Hacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey

Correspondence e-mail:
merzifon@hacettepe.edu.tr

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.068$
Data-to-parameter ratio $=10.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Methoxymethyl-1,3-dithiepane 1,1,3,3-tetraoxide

The title compound, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}_{2}$, consists of a sevenmembered dithiepane ring with two O atoms bonded to each S atom and a methoxymethyl group at the 2-position. A few close contacts seem to influence the geometry of the dithiepane ring.

Comment

During the last decade, compounds having two geminal sulfones have been shown to be useful dienophiles, and they have received considerable attention. A number of arylsubstituted ketenedithioacetal tetraoxides have been shown to be good dienophiles (De Lucchi et al., 1992) in Diels-Alder reactions. The cycloadducts desulfonylate to the corresponding norbornenes.

Similarly, bis(phenylsulfonyl)ethene has been reported (De Lucchi et al., 1991) and the bis-sulfone undergoes highly diastereoselective cycloadditions with unsymmetrical dienes. The bis-sulfone has been shown to be a useful acetylene equivalent in cycloaddition reactions (De Lucchi et al., 1991).

Recently, a sulfone-containing dienophile, benzenesulfonylallene, has been reported (Trudell \& Pavri, 1997), and found to undergo a Diels-Alder reaction with N-Boc-pyrrole. The cycloadduct transformed into the epibatidine precursor in three steps. The sulfonyl group has versatile functionality in organic synthesis and can be conveniently eliminated, resulting in an alkene (Little \& Myong, 1980; Lopez \& Carretero, 1991). Moreover, the sulfonyl group may undergo desulfonylation and oxidative desulfonylation with the formation of the corresponding ketones (Leon \& Carretero, 1991).

(I)

Racemic 2-methoxymethyl-1,3-dithiolane 1,3-dioxide has been shown to be a useful starting material for the preparation of ($1 R, 3 R$)-2-methylene-1,3-dithiolane 1,3-dioxide (Aggarwal et al., 1998). The crystal structure of the five-membered ring analogue of the title compound, (I), viz. 2-methoxymethyl-1,3dithiolane 1,1,3,3-tetraoxide has been reported previously (Özcan et al., 2003). Compound (I) may also prove to be a useful starting material for the preparation of a new sulfonecontaining dienophile.

Received 21 July 2003
Accepted 28 July 2003 Online 8 August 2003

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The title compound, (I) (Fig. 1), consists of a sevenmembered dithiepane ring with two O atoms bonded to each S atom and a methoxymethyl group attached at the 2-position. The S atoms of the dithiepane ring have electron-releasing properties, but the O atoms bonded to the S atoms have electron-withdrawing properties, thereby influencing the bond lengths and angles of the dithiepane ring (Table 1). The dithiepane ring is, of course, not planar.

The structure reveals a number of short contacts: $\mathrm{O} 1 \cdots \mathrm{H} 22(\mathrm{C} 2)=2.51(2), \quad \mathrm{O} 2 \cdots \mathrm{H} 62(\mathrm{C} 6)=2.50(3)$, $\mathrm{O} 3 \cdots \mathrm{H} 21(\mathrm{C} 2)=2.58(3), \quad \mathrm{O} 4 \cdots \mathrm{H} 61(\mathrm{C} 6)=2.45(3)$, $\mathrm{O} 1^{\mathrm{i}} \cdots \mathrm{H} 11(\mathrm{C} 1)=2.59(2), \mathrm{O} 2^{\mathrm{ii}} \ldots \mathrm{H} 42(\mathrm{C} 4)=2.52(3)$, $\mathrm{O} 3^{\mathrm{iii}} \cdots \mathrm{H} 22(\mathrm{C} 2)=2.59(2), \mathrm{O} 4^{\mathrm{iv}} \cdots \mathrm{H} 31(\mathrm{C} 3)=2.63$ (3) and $\mathrm{O} 5^{\mathrm{i}} \cdots \mathrm{H} 32(\mathrm{C} 3)=2.68$ (3) \AA [symmetry codes: (i) $-x, 1-y$, $1-z$; (ii) $x-1, y, z$; (iii) $x+\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2} z$; (iv) $\frac{1}{2}-x, y-\frac{1}{2}$, $\left.\frac{1}{2}-z\right]$. These interactions may have an influence on the bond lengths and angles and also the shape of the molecule.

Experimental

The title compound, (I), was prepared according to a literature method (Aggarwal et al., 1998) from 2-methoxymethyl-1,3-dithiepane $(3.3 \mathrm{~g}, 18.5 \mathrm{mmol})$ in dry ether $(40 \mathrm{ml})$ and purified m-CPBA (m chloroperoxybenzoic acid; $7.03 \mathrm{~g}, 40.7 \mathrm{mmol}$) in diethyl ether $(70 \mathrm{ml})$. The reaction was stirred for 4 h at 273 K , after which the white solid was collected by filtration and purified by column chromatography. Eluting with EtOAc gave racemic ($1 R S, 3 R S$)-2-methoxymethyl-1,3dithiepane 1,3-dioxide (yield $0.5 \mathrm{~g}, 45 \%$) and 2-methoxymethyl-1,3dithiepane 1,1,3,3-tetraoxide (yield $0.5 \mathrm{~g}, 13 \%$); the latter was crystallized from EtOAc (m.p. 361 K).

Crystal data

```
\(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}_{2}\)
\(M_{r}=242.30\)
Monoclinic, \(P 2_{\mathrm{d}} / n\)
\(a=7.8972\) (9) A
\(b=14.627\) (2) \(\AA\)
\(c=9.5192(10) \AA\)
\(\beta=108.739(8)^{\circ}\)
\(V=1041.3(2) \AA^{3}\)
\(Z=4\)
```


Data collection

Siemens $P 4$ diffractometer
Non-profiled ω scans
Absorption correction: none 1933 measured reflections 1800 independent reflections 1255 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.068$
$S=0.99$
1800 reflections
171 parameters
$\theta_{\text {max }}=26.0^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 18$
$l=-11 \rightarrow 11$
2 standard reflections every 50 reflections intensity decay: 1%

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0236 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\mathrm{A}},{ }^{\circ}\right)$.

S1-O2	1.4259 (19)	S2-C1	1.810 (2)
S1-O1	1.439 (2)	O5-C6	1.398 (3)
S1-C2	1.776 (3)	O5-C7	1.423 (3)
S1-C1	1.816 (3)	C5-C4	1.515 (4)
S2-O4	1.429 (2)	C3-C2	1.518 (4)
S2-O3	1.4308 (19)	C3-C4	1.520 (4)
S2-C5	1.762 (3)	C1-C6	1.521 (4)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	119.86 (13)	C5-S2-C1	104.78 (13)
O2-S1-C2	107.49 (13)	C6-O5-C7	111.8 (2)
O1-S1-C2	107.99 (13)	C4-C5-S2	117.6 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	107.47 (13)	C2-C3-C4	114.5 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	104.47 (12)	C5-C4-C3	116.1 (2)
C2-S1-C1	109.24 (12)	C3-C2-S1	115.0 (2)
O4-S2-O3	118.63 (12)	C6-C1-S2	109.78 (17)
O4-S2-C5	107.94 (14)	C6-C1-S1	108.92 (19)
O3-S2-C5	110.34 (13)	S2-C1-S1	116.44 (14)
O4-S2-C1	105.41 (11)	O5-C6-C1	107.2 (2)
O3-S2-C1	108.78 (12)		
C1-S2-C5-C4	-78.5 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	-52.1 (2)
S2-C5-C4-C3	64.1 (3)	$\mathrm{C} 5-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	77.89 (18)
C2-C3-C4-C5	-76.7 (3)	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	-27.0 (2)
C4-C3-C2-S1	97.1 (3)		

Atoms $\mathrm{H} 7 A, \mathrm{H} 7 B$ and $\mathrm{H} 7 C$ were positioned geometrically at a distance of $0.96 \AA$ from C 7 , and a riding model was used during the refinement process. The $U_{\text {iso }}$ value was set equal to $1.5 U_{\text {eq }}(\mathrm{C} 7)$. The remaining H atoms were located in a difference synthesis and refined isotropically $[\mathrm{C}-\mathrm{H}=0.89$ (2)-1.01 (3) \AA].

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Aggarwal, V. K., Gültekin, Z., Grainger, R. S., Adams, H. \& Spargo, L. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2771-2780.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
De Lucchi, O., Fabbri, D., Cossu, S. \& Valle, G. (1991). J. Org. Chem. 56, 18881894.

De Lucchi, O., Fabbri, D. \& Lucchini, V. (1991). Synlett, pp. 565-568.
De Lucchi, O., Fabbri, D. \& Lucchini, V. (1992). Tetrahedron, 48, 1485-1496. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

organic papers

Leon, F. M. \& Carretero, J. C. (1991). Tetrahedron Lett. 32, 5405-5408.
Little, R. D. \& Myong, S. O. (1980). Tetrahedron Lett. 21, 3339-3342.
Lopez, R. \& Carretero, J. C. (1991). Tetrahedron Asymmetry, 2, 93-96.
Ozcan, O., Gültekin, Z., Frey, W. \& Hökelek, T. (2003). Acta Cryst. E59, o747o749.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA.
Trudell, M. L. \& Pavri, N. P. (1997). Tetrahedron Lett. 38, 7993-7996.

